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The heat transfer enhancement revealed experimentally in nanofluids suspensions is being investigated
theoretically at the macro-scale level aiming at explaining the possible mechanisms that lead to such
impressive experimental results. In particular, while the possibility that thermal wave effects via
hyperbolic heat conduction could have explain the excessively improved effective thermal conductivity
of the suspension the comparison with experimental results rules-out this explanation.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

A claimed effective thermal conductivity of up to a factor of 2.5
higher than that of the host-fluid was reported by Choi et al. [1] and
by a factor of 1.4 by Eastman et al. [2]. While some of the more
recent results question the validity of the latter and claim that these
results were not replicated so far, the published evidence shows
that if the experimental conditions were identical to the ones in the
experimental setup of Choi et al. [1] and Eastman et al. [2] similar
enhancement can be reached, e.g. Ref. [3]. All relevant experiments
conducted by using the Transient Hot Wire method seem to reveal
the same general trend of an impressive increase of the effective
thermal conductivity of the suspension [2,1,4] far beyond the one
predicted by using the effective medium theory [5–11]. In contrast,
all experiments conducted by using optical methods [12–14] did
not reveal such an enhancement and are perfectly consistent with
the effective medium theory. The importance of discovering the
correct mechanism and theory that underlies this phenomenon lies
in the possibility to extend design options in developing processes
and devices that apply these mechanisms, hence opening the door
to yet unknown and limitless possibilities of new processes and
devices that use heat transfer. Choi et al. [1] compared their results
with exiting theories, some of them going back to the start of the
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last century, e.g. Refs. [5–11]. The reported experimental results are
by one order of magnitude greater than the predictions based on
existing theories and models. More recent approaches [16] also
cannot explain this discrepancy.

There is a clear and appealing need to settle the conflict between
the recent experimental results and the theories or models.
Possible explanations for the divergence between theory and
experiments were suggested and explored very basically by
Brownian motion of the particles [17,18], micro-convection due to
Brownian motion [19], molecular-level layering of the liquid at the
liquid/particle interface [17,18,20], the nature of heat transport
within the nanoparticles and effects of nanoparticle clustering
[17,18], thermo-phoresis [21,22], electro-phoresis [21], hyperbolic
heat conduction [23], Dual-phase-lagging effect of heat conduction
in the nanofluid suspension [21]. To this end, most of these
proposed mechanisms have been eliminated due to the theoretical
outcomes of more detailed investigations except the dual-phase
lagging, and that of nanoparticle clustering. The immediate
conclusion from the latter deduction is that the Transient Hot Wire
method (THW) that was used by Eastman et al. [2], Lee et al. [15]
and by Choi et al. [1] to measure the nanofluid suspension’s
effective thermal conductivity is not appropriate because it uses the
Fourier Law of heat conduction as its fundamental principle for
estimating the thermal conductivity [24,25]. Eastman et al. [2]
indicate the way the thermal conductivity is being evaluated by
using Fourier Law in the Transient Hot Wire (THW) method.
Therefore, based on this simple logic the excessive values of
effective thermal conductivity calculated based on the
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Nomenclature

Latin symbols
c* wave speed, equals

ffiffiffiffiffiffiffiffiffiffiffiffi
a*=s*

p
Fo Fourier number, equals a*s*=r2

o*

i electrical current
k* effective thermal conductivity of the suspension
l* length of the platinum wire/strip
q* heat flux
q0* horizontal heat flux on the boundary of the

platinum wire, at r*¼ rw*

_q*l rate of heat generated by Joule heating in the
platinum wire per unit length of wire

R electrical resistance, dimensional
r* radial variable co-ordinate
rw* radius of the platinum wire
r0* radius of the cylindrical container
t* time
T dimensionless temperature, equals

(T*�TC*)k*/(qo*ro*)
TC* coldest wall temperature, dimensional
T1* temperature measured at time t*1

T2* temperature measured at time t*2

V voltage across the platinum wire, dimensional
x horizontal variable co-ordinate

Greek symbols
a* effective thermal diffusivity of the suspension
s* relaxation time in hyperbolic thermal conduction

Subscripts
* dimensional values
cr critical values
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experimental data might need a correction to account for devia-
tions from Fourier Law.

The present paper demonstrates that while thermal wave
effects via hyperbolic heat conduction [26–29] could have explain
the excessively improved effective thermal conductivity of the
suspension their comparison with experimental results [30] rule-
out this explanation.
Fig. 1. Problem formulation of heat conduction in a cylindrical annulus subject to
a combination of constant temperature (Dirichlet) and constant heat flux (Neumann)
boundary conditions and the Transient Hot Wire configuration.
2. Experimental methods for thermal conductivity
estimation

The Transient Hot Wire (THW) method for estimating experi-
mentally the thermal conductivity of solids [31] and fluids [32–34]
established itself as the most accurate, reliable and robust tech-
nique [35]. It replaced the steady state methods primarily because
of the difficulty to determine that steady state conditions haven
indeed been established and for fluids the difficulty in preventing
the occurrence of natural convection and consequently the diffi-
culty in eliminating the natural convection effects on the heat flux.
The method consists in principle of determining the thermal
conductivity of a selected material/fluid by observing the rate at
which the temperature of a very thin platinum wire (5–80 mm)
increases with time after a step change in voltage has been applied
to it. The platinum wire is embedded vertically in the selected
material/fluid and serves as a heat source as well as a thermom-
eter, as presented schematically in Fig. 1. The temperature of the
platinum wire is established by measuring its electrical resistance,
the latter being related to the temperature via a well-known
relationship. A Wheatstone bridge is used to measure the electrical
resistance Rw of the platinum wire (see Fig. 1). The electrical
resistance of the potentiometer R3 is adjusted until the reading of
the galvanometer G shows zero current. When the bridge is
balanced as indicated by a zero current reading on the galva-
nometer G, the value of Rw can be established from the known
electrical resistances R1, R2 and R3 by using the balanced Wheat-
stone bridge relationship Rw¼ R1R3/R2. Because of the very small
diameter (micrometer size) and high thermal conductivity of the
platinum wire the latter can be regarded as a line source in an
otherwise infinite cylindrical medium. The rate of heat generated
per unit length (l*) of platinum wire is therefore _q*1 ¼ iV=l* [W/
m], where i is the electric current flowing through the wire and V
is the voltage drop across the wire. Solving for the radial heat
conduction due to this line heat source leads to a temperature
solution in the following closed form that can be expanded in an
infinite series as follows

T* ¼
_q*1

4pk*
Ei

 
r2
*

4a*t*

!
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where Eið$Þ represents the exponential integral function, and
g¼ ln(s)¼ 0.5772156649 is Euler’s constant. For a line heat source
embedded in a cylindrical cell of infinite radial extent and filled
with the test fluid one can use the approximation r2

*=4a*t*�1 in
Eq. (1) to truncate the infinite series and yield
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Eq. (2) reveals a linear relationship, on a logarithmic time scale,
between the temperature and time. For r*¼ rw*, rw* being the
radius of the platinum wire, the condition for the series truncation
r2
*=4a*t* � 1 can be expressed in the following equivalent form

that provides the validity condition of the approximation in the
form

t*[
r2

w*

4a*
(3)

For any two temperature readings T1* and T2* recorded at the times
t*1 and t*2 respectively the temperature difference (T2*� T1*) can be
approximated by using Eq. (2) in the form

ðT2* � T1*Þz
iV

4pk*l*

�
ln
�

t*2

t*1

��
(4)

where we replaced the heat source with its explicit dependence on
the i,V and l*, i.e., _q*1 ¼ iV=l*. From Eq. (4) one can express the
thermal conductivity k* explicitly in the form

k*z
iV

4pðT2* � T1*Þl*

�
ln
�

t*2

t*1

��
(5)

Eq. (5) is a very accurate way of estimating the thermal conductivity
as long as the validity conditions for appropriateness of problem
derivations used above are fulfilled. A finite length of the platinum
wire, the finite size of the cylindrical container, the heat capacity of
the platinum wire, and possibly natural convection effects are
examples of possible deviations of any realistic system from the one
used in deriving Eq. (5). De Groot et al. [32], Healy et al. [33], and
Kestin and Wakeham [34] introduce an assessment of these devia-
tions and possible corrections to the THW readings to improve the
accuracy of the results. In general all the deviations indicated above
could be eliminated via the proposed corrections provided the val-
idity condition listed in Eq. (3) is enforced as well as an additional
condition that ensures that natural convection is absent. The validity
condition (3) implies the application of Eq. (5) for long times only.
However, when evaluating this condition (3) to data used in the
nanofluids suspensions experiments considered in this paper one
obtains explicitly the following values. For a 76.2 mm diameter of
platinum wire used by Eastman et al. [2], Lee et al. [15], Choi et al. [1],
the wire radius is rw*¼ 3.81� l0�5 m leading to r2

w*=4a* ¼ 3:9 ms
for Ethylene Glycol and r2

w*=4a* ¼ 4:2 ms for oil, leading to the
validity condition t*[3:9 ms for Ethylene Glycol and t*[4:2 ms.
The long times beyond which the solution (5) can be used reliably
are therefore of the order of a tens of milliseconds, not so long in the
actual practical sense. On the other hand the experimental time
range is limited from above as well in order to ensure the lack of
natural convection that develops at longer time scales. Xuan and Li
[4] estimate this upper limit for the time that an experiment may
last before natural convection develops as about 5 s. They indicate
that ‘‘An experiment lasts about 5 s. If the time is longer, the temper-
ature difference between the hot-wire and the sample fluid increases
and free convection takes place, which may result in errors’’. Lee et al.
[15] while using the THW method and providing experimental data
in the time range of 1 s to 10 s, indicate in their Fig. 3 the ‘‘valid
range of data reduction’’ to be between 3 s and 6 s. Our estimations
evaluated above confirm these lower limits as a very safe constraint
and we assume that the upper limits listed by Xuan and Li [4] and
Lee et al. [15] are also good estimates, leading to the validity
condition of the experimental results to be within the following
estimated time range of 0.03 s< t*< 6 s. The valid range for data
reduction used by Lee et al. [15], i.e., 3 s< t*< 6 s should also be
satisfactory. Within this time range the experimental results should
produce a linear relationship, on a logarithmic time scale, between
the temperature and time.

While the application of the method to gases is straightforward
its corresponding application to electrically conducting liquids and
solids needs further attention. The experiments conducted in
nanofluids suspensions listed above [1,2,4] used a thin electrical
insulation coating layer to cover the platinum wire instead of using
the bare metallic wire, a technique developed by Nagasaka and
Nagashima [36]. The latter is aimed at preventing problems such as
electrical current flow through the liquid causing ambiguity of the
heat generation in the wire. In the case of solids Assael et al. [31,37–
40] demonstrates the importance of using an intermediate soft
solid material between the hot wire and the solid of interest in
order to eliminate or substantially reduce contact thermal resis-
tances. Therefore, the bare metallic wire can only be used for gases,
e.g. de Groot et al. [41], or electrically insulating liquids such as oils.

Assael et al. [31,37–40] developed a new application of the Tran-
sient Hot Wire method by using a commercial software to solve the
whole temperature-time curve by trial and error until it fits the
experimental data, at which point the thermal conductivity (k) and
the heat capacity (rcp) of the material are found. Assael et al. [31,37–
40] showed the development of this method specifically for solids
with only one example used for applying it to fluids, and without
discussing the possible effects of convection on the latter. Preventing
effects of convection in fluids is a particular emphasis that is
substantially distinct from its application to solids. All these demon-
strations still use experimental standards (e.g. diameter or cross
sectional extent of the wire, length of the wire, wire material) that are
within the validity range of the classical Transient Hot Wire method
described above, although experimental results for time ranges of
microseconds can be used when using the proposed method.

The impressive experimental results by Choi et al. [1] have not
been confirmed nor reproduced so far. Assael et al. [42,43]
attempted to confirm such results and showed an improved
effective thermal conductivity of up to 38%, and the latter decays in
time claimed to be due to homogenization. Although 38%
improvement is substantially less than the 150% claimed by Choi
et al. [1] it is still an impressive enhancement. Understanding the
source of such discrepancies becomes an important task.

3. Problem formulation and thermal wave effects

The present investigation focuses on thermal wave effects via
the constitutive model suggested by Cattaneo [26] and Vernotte
[27–29] and the possible deviation of the experimental results due
to these effects from the expected Fourier conduction. To investi-
gate preliminary the possibility that thermal wave effects might
have been the cause of the apparently spectacular enhancement of
the effective thermal conductivity of the suspension we consider
the thermal conduction in a cylindrical geometry due to the hot
wire as the heat source (see Fig. 1) via the hyperbolic heat
conduction formulation as well as via a Fourier heat conduction
formulation and compare between the two. The cylindrical geom-
etry used here applies to a Transient Hot Wire method of evaluation
of the thermal conductivity and the comparison applies to devia-
tions between Fourier to hyperbolic thermal conduction as appli-
cable to the THW method and the required corrections in
accounting for the latter deviations.

While the objective of this paper is to present the derivations of
the solutions to the hyperbolic heat conduction problem the first
step is to show the solution to the corresponding Fourier heat
conduction. The reason for the latter is the need to have the
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reference Fourier solution for comparison purposes as will be
shown later. Consider the cylinder as described in Fig. 1 subject to
a constant heat flux at rw*q0*, representing the heat flux from the
hot wire to the fluid due to the uniform Joule heating generated in
the thin hot wire by the electric current, and a constant cold
temperature TC* at r0*. The Fourier conduction phenomenon is
governed by the constitutive relationship between the heat flux
and temperature gradient in the form

q* ¼ �k*V*T* (6)

and the energy balance equation

r*cp*
vT*

vt*
¼ �V*$q* (7)

which lead to the Fourier heat conduction equation

v2T*

vr2
*

þ 1
r*

vT*

vr*
¼ 1

a*

vT*

vt*
(8)

where r* is the independent variable in the radial direction and a* is
the thermal diffusivity. Eq. (8) may be transformed into a dimen-
sionless form by introducing the following definitions of dimen-
sionless variables

r ¼ r*

ro*
; t ¼ a*t*

r2
o*

(9)

that transform Eq. (8) into its corresponding dimensionless form

v2T
vr2 þ

1
r

vT
vr
¼ vT

vt
(10a)

The boundary and initial conditions are expressed in the following
dimensionless form

r ¼ rw :
vT
vr
¼ �1

r ¼ 1 : T ¼ 0
(11)

t ¼ 0 :

�
T ¼ To ¼ const:
_T ¼ _To ¼ const:

(10b)

Eq. (10) has a steady state dimensionless solution as follows

Ts ¼ �rwln r (12)

and a transient solution obtained via separation of variables in the
form

Tt ¼
XN
n¼0

ane�b
2
ntR0n (13)

where an is represented by the following equation

an ¼
I1 � I2

I3
(14)

and I1, I2, I3 are definite integrals with the following solutions

I1 ¼
T0

bn

�
2

pbn
� rwR0ðbn; rwÞ

�
(15a)

I2 ¼ �
rwR0nðbn; rwÞ

b2
n

(15b)

I3 ¼ NðbnÞ ¼
2

p2

J002ðbnrwÞ � J2
0ðbnÞ

b2
nJ002ðbnrwÞ

(15c)
where R0n is represented by a linear combination of Bessel func-
tions as follows

R0nðbn; rÞ ¼ J0ðbnrÞY0ðbnÞ � J0ðbnÞY0ðbnrÞ (16)

and bn’s are the positive roots of the following eigenvalues equation

J00ðbnrwÞY0ðbnÞ � J0ðbnÞY 00ðbnrwÞ ¼ 0 (17)

where J0 and Y0 are the order 0 Bessel functions of the first and
second kind, respectively. Then, the complete Fourier solution (see
Ref. [44] for details) has the form

T ¼ Ts þ Tt ¼ �rwln r þ
XN
n¼0

ane�b
2
ntR0nðbn; rÞ (18)

where an is defined by (14) and (15), R0n by (16) and the bn’s are the
roots obtained from solving Eq. (17).

The hyperbolic conduction phenomenon is governed by the
constitutive relationship between the heat flux and temperature
gradient in the form

s*
vq*

vt*
þ q* ¼ �k*V*T* (19)

which combined with the energy balance Eq. (7) leads to the
hyperbolic heat conduction equation

1
c2

*

v2T*

vt2
*

þ 1
a*

vT*

vt*
¼ V2

*T* (20)

where c* ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a*=s*

p
is the speed of wave propagation. Eqs. (19) and

(20) may be transferred into a dimensionless form by introducing
the following scales r0*, r0*

2 /a*, q0*, q0*L*/k* for the space variable,
time variable, heat flux and temperature difference, respectively.
This leads to the following definitions of the dimensionless
variables

r ¼ r*

ro*
; t ¼ a*t*

r2
o*

; q ¼ q*

q0*
; T ¼ ðT* � TC*Þk*

q0*L*
(21)

that transform Eqs. (19) and (20) into their corresponding dimen-
sionless form

Fo
vq
vt
þ q ¼ �VT (22)

Fo
v2T
vt2 þ

vT
vt
¼ V2T (23)

where Fo ¼ a*s*=r2
0* is the Fourier number. For the one-dimen-

sional slab considered here Eq. (23) takes the form

Fo
v2T
vt2 þ

vT
vt
¼ v2T

vr2 þ
1
r

vT
vr

(24)

The boundary and initial conditions are expressed in the
following dimensionless form

r ¼ rw : vT
vr ¼ �1

r ¼ 1 : T ¼ 0
(25)

t ¼ 0 :

�
T ¼ T0 ¼ const:
_T ¼ _T0 ¼ const:

(26)

Note that because the boundary heat flux at r¼ rw is constant, Eq.
(22) with ðvq=vtÞr¼rw

¼ 0, produces ðqrÞr¼rw
¼ �ðvT=vrÞr¼rw

,
a result that is identical to the Fourier boundary condition.
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The solution to Eq. (24), subject to the boundary and initial
conditions (25) and (26), obtained via separation of variables is
expressed in terms of orthogonal eigenfunctions in the form

T ¼ Ts þ Tt

¼ �rwln r þ
Xncr�1

n¼1

An1

�
el1t=Fo � lND1el2t=Fo

	
R0ðbnrÞ

þ An2elt=Foð1� lt=FoÞR0


bncr

r
�

þ
XN

ncrþ1

Ancr e
l1t=Fo½cosðlint=FoÞ � lND2sinðlint=FoÞ�R0ðbnrÞ

(27)

where

l1;2 ¼ �
1
2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Fob2

q �
cb < bcr (28)

l ¼ �1
2

cb ¼ bcr (29)

lr ¼ �
1
2

cb > bcr (30)

lin ¼
1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fob2 � 1

q �
cb > bcr (31)

lND1 ¼
l1

l2
(32)

lND2 ¼
lr

lin
(33)

An1 ¼
I1 � I2

ð1� l1
l2

	
I3

cb < bcr (34a)

An2 ¼ Ancr ¼
I1 � I2

I3
cb ¼ bcr (34b)

An3 ¼ An2 ¼
I1 � I2

I3
cb > bcr (34c)

and I1, I2, I3 are definite integrals with the following solutions

I1 ¼
T0

bn

�
2

pbn
� rwR0ðbn; rwÞ

�
(35a)

I2 ¼ �
rwR0nðbn; rwÞ

b2
n

(35b)

I3 ¼ NðbnÞ ¼
2

p2

J002ðbnrwÞ � J2
0ðbnÞ

b2
nJ002ðbnrwÞ

(35c)

where R0n is represented by a linear combination of Bessel func-
tions as follows

R0nðbn; rÞ ¼ J0ðbnrÞY0ðbnÞ � J0ðbnÞY0ðbnrÞ (36)

and bn’s are the positive roots of the following equation

J00ðbnrwÞY0ðbnÞ � J0ðbnÞY 00ðbnrwÞ ¼ 0 (37)
where J0 and Y0 are the order 0 Bessel functions of the first and
second kind, respectively. The value of bcr can be expressed by
equating the square root in Eq. (28) to zero, as follows

bcr ¼
1

2
ffiffiffiffiffi
Fo
p (38)

The dimensionless distance between the wire and the cylinder wall
is (l� rw) and the dimensionless speed of wave propagation from
Eq. (23) is 1=

ffiffiffiffiffi
Fo
p

, hence the dimensionless time needed for the
thermal pulse to cross the annulus gap is

tw ¼
ð1� rwÞ

1ffiffiffiffi
Fo
p

¼ ð1� rwÞ
ffiffiffiffiffi
Fo
p

(39)

Its corresponding dimensional time is

tw* ¼ ðr0* � rw*Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
s*=a*

p
(40)

4. Analytical estimation of corrections to experimental data

When evaluating the thermal conductivity by applying the
Transient Hot Wire method and using the Fourier Law one obtains
from Eq. (18) the following solution for the dimensional tempera-
ture Tw*ðtÞ at r¼ rw

½Tw*ðtÞ � TC*� ¼
qo*ro*

kapp
½ � rwlnðrwÞ þ f ðtÞ� (41)

where

f ðtÞ ¼
XN
n¼0

Cnexp
h
�b2

nt
i

(42)

and for initial conditions of To¼ 0 the values of Cn are evaluated by
using Eqs. (18) and (16). From Eq. (41) the thermal conductivity can
be evaluated in the form

Kact ¼
qo*L*

½Tw*ðtÞ � TC*�
½ � rwlnðrwÞ þ f ðtÞ� (43)

where the temperature difference ½Tw*ðtÞ � TC*� is represented by
the recorded experimental data and the value of the wall heat
flux q0* is evaluated from the Joule heating of the hot wire in the
form q0* ¼ iV=2prwl*, where 2prw*l* is the heat transfer area of
the hot wire, with l* being the length of the wire i is the electric
current flowing through the wire and V is the voltage drop across
the wire.

A method of Synthetic Experimental Emulation Data (SEED) is
applied now to evaluate the deviation between Fourier and
hyperbolic thermal conduction. According to the SEED method one
assumes that the data expressed by ½Tw*ðtÞ � TC*� represent
a different than the Fourier conduction solution, in this case
a hyperbolic thermal conduction solution. Then the values of
Tw*ðtÞ � TC* were derived by using the hyperbolic solution pre-
sented in Eq. (27) evaluated at r¼ rw to yield

kapp

kact
¼ ½ � rwlnðrwÞ þ f ðtÞ�
½ � rwlnðrwÞ þ hðtÞ� (44)

where kapp is the apparent thermal conductivity obtained from the
Fourier conduction solution while kact is the actual thermal
conductivity that corresponds to data that follow the hyperbolic
conduction, and where f(t) can be evaluated from Eq. (42) while h(t)
is derived from the hyperbolic solution (27) evaluated at r¼ rw. The
ratio between the two will provide the deviation of the apparent
thermal conductivity from the actual one.
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5. Results and discussion

A comparison between the wire temperatures evaluated via
Fourier and Hyperbolic solutions is presented in what follows.
Fig. 2(a) shows the dimensionless wire temperature vs. dimen-
sional time (on logarithmic scale) for copper in Ethylene Glycol
using a combination of Dirichlet and Neumann boundary condi-
tions for Fourier and Hyperbolic heat conduction problems with
a Fourier number of Fo¼ 10�3. Fig. 2(a) shows that for the time
window of 10 s the Fourier heat conduction displays a linear result,
and for the hyperbolic heat conduction the result looks almost
linear. Only at times past 10 s the hyperbolic solution turns toward
0
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Fig. 2. The dimensionless wire temperature vs. dimensional time (on logarithmic scale)
a combination of Dirichlet and Neumann boundary conditions for Fourier and Hyperbolic h
the Fourier solution and shows a non-linear curve. Therefore, when
using the Transient Hot Wire method for a time window of up to
10 s to prevent convection a hyperbolic solution may seem linear
and may be confused with the Fourier solution. Fig. 2(b) shows the
dimensionless wire temperature vs. dimensional time (on loga-
rithmic scale) for Carbon Nanotubes in Oil using a combination of
Dirichlet and Neumann boundary conditions for Fourier and
Hyperbolic heat conduction problems with Fourier number of
Fo¼ 10�3. This graph in Fig. 2(b) shows a similar result to the one in
Fig. 2(a). For the time window of 10 s the hyperbolic heat
conduction solution looks again almost linear and can be mistaken
for the Fourier solution when using the Transient Hot Wire method.
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Fig. 4. Thermal conductivity ratio (kapp/kact) from the hyperbolic solutions corre-
sponding to properties of water and Fourier numbers of Fo¼ 0.6 and Fo¼ 0.03
compared to the experimental results from specimen 5 [30].
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Fig. 2(c) shows the dimensionless wire temperature vs. dimen-
sional time (on logarithmic scale) for copper in Ethylene Glycol
using a combination of Dirichlet and Neumann boundary condi-
tions for Fourier and Hyperbolic heat conduction problems with
Fourier number of Fo¼ 0.01. As the Fourier number is increased the
wave effect becomes more apparent, however with a Fourier
number of Fo¼ 0.01 the hyperbolic solution for the time window of
10 s still may pass for linear. For this reason it may be mistaken for
the Fourier solution when using the Transient Hot Wire method.
Fig. 2(d) shows the dimensionless wire temperature vs. dimen-
sional time (on logarithmic scale) for Carbon Nanotubes in Oil using
a combination of Dirichlet and Neumann boundary conditions for
Fourier and Hyperbolic heat conduction problems with Fourier
number of Fo¼ 0.01. From Fig. 2(d) one can draw the same
conclusions as from Fig. 2(c). Fig. 2(e) shows the dimensionless
wire temperature vs. dimensional time (on logarithmic scale) for
copper in Ethylene Glycol using a combination of Dirichlet and
Neumann boundary conditions for Fourier and Hyperbolic heat
conduction problems with a Fourier number equal to 1 (Fo¼ 1).
Fig. 2(f) shows the dimensionless wire temperature vs. dimensional
time (on logarithmic scale) for Carbon Nanotubes in Oil using
a combination of Dirichlet and Neumann boundary conditions for
Fourier and Hyperbolic heat conduction problems with Fourier
number equal to 1 (Fo¼ 1). Fig. 2(e) and (f) show that even when
the Fourier number is 1 (Fo¼ 1), at a time window of 10 s the
hyperbolic solution may still seem linear. This may be mistaken
when using the Transient Hot Wire method for a Fourier solution.

The significance of the conclusions discussed above related to
Fig. 2(a)–(f) is that when using the results obtained from the
Transient Hot Wire method a Fourier solution is being used, even
though a hyperbolic solution might be the one being revealed.

Generally, a hyperbolic thermal wave solution has the form of
a sharp front of temperature moving from one boundary to the
other at the propagation speed c* ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
a*=s*

p
. As a result, the same

sharp front can be distinguished in plotting the temperature solu-
tion vs. time at any fixed spatial location. This sharp discontinuity is
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Fig. 3. Thermal conductivity ratio (kapp/kact) from the hyperbolic solutions corre-
sponding to properties of water and Fourier numbers of Fo¼ 0.1 and Fo¼ 0.9 compared
to the experimental results from specimen 4 [30].
reflected in the results of the thermal conductivity ratio kapp/kact

obtained from the hyperbolic and Fourier solutions for a wide range
of Fourier number values. These results were compared with the
experimental data presented by Liu et al. [30] and are presented in
Figs. 3–5. The thermal conductivity ratio results corresponding to
Fourier number values of Fo¼ 0.1 and Fo¼ 0.9 are presented in
Fig. 3. Fig. 4 shows the corresponding results for Fourier numbers of
Fo¼ 0.6 and Fo¼ 0.03. The results for Fo¼ 0.2 and Fo¼ 0.08 are
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Fig. 5. Thermal conductivity ratio (kapp/kact) from the hyperbolic solutions corre-
sponding to properties of water and Fourier numbers of Fo¼ 0.2 and Fo¼ 0.08
compared to the experimental results from specimen 9 [30].
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presented in Fig. 5. All three figures show that due to the sharp
discontinuity in the hyperbolic solution which is revealed for not
too small values of Fourier numbers there is no way to match the
experimental data and therefore removing the hypothesis that
thermal waves could have provided an explanation for the
enhanced effective thermal conductivity in nanofluid suspensions.

6. Conclusions

The results obtained from this study suggest that the anticipa-
tion that thermal wave effects via hyperbolic heat conduction could
have been the source of the excessively improved effective thermal
conductivity of the suspension cannot be realized.
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